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Abstract. An iterative finite-difference scheme for initial value problems is presented. It 
is applied to the quasi-linear hyperbolic system representing the one-dimensional time 
dependent flow of a compressible polytropic gas. The emphasis in this research was on the 
handling of discontinuities, such as shock waves, and overcoming the post-shock oscilla- 
tions resulting from nonlinear instabilities. The linear stability is investigated as well. The 
success of the method is indicated by the monotonic profiles which were obtained for almost 
all the cases tested. 

1. Introduction. In this paper we describe a finite-difference scheme of an 
iterative character which is used to solve initial value problems. In particular, we 
examine quasi-linear hyperbolic systems, such as the one describing the one- 
dimensional time dependent flow of a compressible polytropic gas. The emphasis in 
this research was on the handling of discontinuities, such as shock waves, and over- 
coming the post-shock oscillations resulting from nonlinear instabilities. The success 
of the method is indicated by the monotonic profiles which were obtained for almost 
all the cases tested. 

The method is based on an idea which was first examined by Gary [1] and con- 
sidered by him to be unsatisfactory [2]. It will be shown what modifications are 
needed to insure stability and monotonicity of the flow property profiles. Recently 
Gourlay and Morris [9] used a similar approach to deal with problems which have 
smooth solutions. 

The scheme is compared with several others, including the one proposed by 
Godunov, by performing the numerical computations for two hydrodynamic 
problems: 

(1) Plane, steady shock wave. 
(2) A plane detonation wave reflecting off a wall. 
The computations described herein were carried out on the CDC 3400 at 

Tel-Aviv University. 

2. The Differential Equations. The system of partial differential equations under 
consideration is 

(1) oW/at + A aW/x = 0. 

The independent variables are x and t; W is the vector of the unknown (scalar) 
functions (W1, W2, - - *, Wn) and A is a matrix whose components are functions of 
the W's. The system is quasi-linear because A does not contain derivatives of W. 
The hyperbolicity of the equation implies that the eigenvalues of A, i.e. 
Xiffi *... , Wn), ..., Xn(W1, *.. , W,), are real for all values of W1, * , W. under 

consideration. 
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Equation (1) is said to be in a conservation-law form if A (W/ax) = aF/ax i.e. 

(la) OW/It = -OF/x 

where F is a vector whose components are functions of the components of W. In this 
paper all our numerical computations and stability analysis will be carried out for 
the one-dimensional hydrodynamic equations, in Lagrangian coordinates, for a 
polytropic gas. For this case we have [3] 

(2) W; F(W) p 

where V, u, E and p are respectively the specific volume, velocity, specific total 
energy and the pressure.* All quantities are dimensionless, including the time t and 
the Lagrangian coordinate x. The corresponding form of A is 

0 -V 0 

(3) A (W) = [ -P - -1)u 'Y-1 

-PU pV - (eY - 1)u2 ('y - 1)u_ 

3. The Difference Equations. As the finite-difference approximation to (la) we 
chose the Lax-Wendroff scheme [4], [3] which is of second-order accuracy: 

T [Fnl-F!1 (4) = Ij - 2 [J+- 

+ 2 [A >+1 2(F+i - F1j) -A A-112(F1 -Fnj1) 
where fjn = f(xj, tW) and X = At/ Ax. Equation (4) may be written as 

W( + = W!, + Q.W ' 

For the treatment of shock waves Lax and Wendroff [4] suggest adding to Eq. (5) 
another term Q' . Wjn which plays the role of artificial viscosity. The equation then 
takes the form 

(6) W+ = [I + Q + Q'IWn 
with 

- 
n 

[ C(nAn 2(W W 
Q 

", n a axj+ -Cj (A}..12)2(Wj+ - 

(cj1 /2) ~n _ n 
_C3 -Cj_j (A'8 1/2 )2(Wsn _ WX 1) 

where c is the Lagrangian sound speed (= (,yp/v)1/2) and a is a constant of order 
unity. A linear stability analysis, 'a la von Neumann, yields the following stability 
criterion [3]: 

* Here the pressure is given by p = ((y - 1)/v) [E - 1 u21, where -y is the polytropic constant. 



AN ITERATIVE FINITE-DIFFERENCE METHOD 551 

(7) At . (1 + a2/4)112 - a/2 
Ax Max Icfnj 

This follows from the fact that c (the Lagrangian sound speed) is the maximal 
characteristic value of A. Thus a = 3/2 gives a requirement which is twice as 
stringent as the usual CFL (Courant-Friedrichs-Levy) criterion. In the present 
work, however, we shall use mainly schemes that stem from Eq. (5) rather than (6). 

We have not specified as yet how one defines A +i1/2. In the open literature one 
finds two versions [1], [3], [5], [4]: 

A~ 1/a= 2 [A ;+1 + A jn] = '[A (W ̀ +1) + A (Wj n) ] and A" 1/2 = A[ (VWnj+1 + Wjn)/2]. 

Both forms preserve the integrated conservation law, but in general the resulting 
difference equation does not satisfy the conservation requirements "in the small." 
In other words, usually Aj+1 /2 AW $ AF. However, the L-W method is based 
on obtaining the second term in a Taylor series thus: 

Wtt = (-Fx) t = (-Ft)x = (-AWt)x = (AFx)x 

where the third equality is due to the fact that A is the Jacobian of F with respect to 
W. The equivalent finite-difference relation would be A A Aw = AF. This require- 
ment is satisfied if one takes A'j 1/2 = A[(Wnj+l + Wjn)/2] where A (W) is given by 
(3) with p appearing explicitly as shown. If, for example, one takes A j+12 = 

A [(nV2j+l + Wjn)/2] where, however, A (W) is given in terms of the proper components 
of W, i.e. v, u and E, then A AW is not exactly equal to AF. 

It turns out that in practical computations the numerical results obtained by 
our iterative scheme are very similar for all versions of A'n+1/2. We feel, however, 
that in multi-dimensional problems, an analogous truly conservative scheme might 
be the more successful one. 

We close this section by noting that 

(8) A%+l12 1Aw = F 

implies 

(9) (A3+12)2*AIV = A3+12.AF. 

Note that using (9) one may obtain (see Eq. (6)) 

/ n X n n > r a (C+j - C!')1 n n 
(Q + QV)W = - F j-1) {[ + ac ]A /2 (Fpil-F 

(C+ /2)2 (10) - 1+a(Cj n_ } -/(j-g-) 

We thus see that the effect of adding the artificial viscosity term merely changes the 
coefficients of the terms of the form A * AF. It is for this reason that the iterative 
procedure, to be described shortly, was applied to Eq. (5) rather than to (6). 

We conclude by noting that 
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Aj+1 /2 (F>1 - Fj) = (A+1- Wi) 

_ 1-P+1+P3+1 - pj ) 

1 ~~~2, n 1+Vn (a+1 us U 

(11) 2 Pi~i + Pi n2- 1Vj+ 

L _ - n 1) 2 (un,)2] + (P1+1)2 (pn,2 

and similarly for A%_1/2 (Fjn - Fnj-). This result is similar but not equal to the 
one quoted by Lax and Wendroff [3] since Zc2 $ ype/v. We feel that the right-hand 
side of (11) is in the more proper form because of the equality of the left-hand side 
and middle terms. This equality is assured by choosing A1 +1/2 as described above. 

4. The Iterative Method. This is an explicit-implicit scheme in which the solu- 
tion of the difference equations is taken as the zeroth approximation. Write the 
difference system in the fully explicit form 

(12) Winj = Wrn + Q.W n 

The nonlinear matrix operator Q need not necessarily be the Lax-Wendroff operator 
appearing in Eq. (5). However, unless otherwise specified, Q will be taken to mean 
the L-W operator. Let us next consider a mixed implicit-explicit finite-differencing 
scheme 

(13) W n+1 = W in + Q.[6W n+ + (1 - 6)W j] 

where 0 < 0 ? 1. The case 0 = 0 gives back the fully explicit form Eq. (12). The 
iterative scheme is based on (13) and the successive sth iterate, denoted by Wns, sat- 
isfies the following recursive relation in s: 

(14) W n+l,s+l = WJn + Q. [6Wn+ls + (1 - 6)Wj ] 

where s = 0, 1, 2, , k -1 and where we define Wjn+1,0 = Wjn. Note that the 
result of the first iteration (s = 0) is the same as the one obtained by solving the 
original difference equation (12). There will be k iterations at each time step with s 
increasing from 0 to k - 1. 

We now address ourselves to three questions: 
(a) What is the stability criterion of the iterative scheme. 
(b) What is the behavior of W n+l s as s -> oo. 
(c) The numerical results for a small or moderate number of iterations, especially 

near shock waves. 
Points (a) and (b) will be considered now. The numerical results will be described 

separately in Section 5. 
As usual the stability analysis of the scheme is carried out under the assumption 

that the matrix A is locally constant. The case being examined is that where the 
zeroth iterate is the Lax-Wendroff finite-difference operator. Hence, for A constant, 
we have, see Eq. (4) 
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W,''+l's~l = W~n- 2 A.[6(W~4Js 8- W'i+iIS) + (1 - 6)(W)+1 - W'V1)] 

(15) + -A2 * [(+l - 2Wjn+ls + Wn+ls) 

+ (1 - 0) (Wn+1 - 2Wj-+ WIV1)] 

Next define an operator Q such that 

Qf n= - 21 HAn (f +i- f) + OA2 (f+i - 2fjn+ fni). 
2 j- 2 +j 

Equation (15) is now written as 

(16) Wjfl1lS+l = (I + p n)Wf + QW 1n+1 s 

where ,u = (1- 0)/; since we will consider 2 < 0 < 1 it follows that 1 > ,> 0. 
Since Wjn+ O =Wjn we immediately find 

W in+1 = [I + (1 + I.L)Q]W n 

f n+,2 = [I + (1 + ,.) (Q + Q2)]Wfn 

(17) 

_ ~~~~~k 
.W n+l,k I+ (1 + E Ur W in 

r~l 

We follow von Neumann and let Wjn = Rn exp [iwxj] and substitute in Eq. (17) 
to find 

(18) W n+lk G= W n 

where the amplification matrix G is given by 
k 

(19) G = I+ (1 +,) (D + iB)r 
r=1 

with 

D = -2X 20. sin2 4*.A2 
B= -XO*sin20-A 
0 = wAx/2. 

If we denote the characteristic values of the matrices D and B by d and b respec- 
tively, then according to the spectral mapping theorem the corresponding eigenvalue 
of G, say g, is given by 

k 
r 1 - (d + ib)k+l 

We note here that it follows from the definition of D and B that 

d = -2X2Oa2sin2 4 b = -X *sin 24, 

where a is a characteristic value of the matrix A. The von Neumann criterion for 
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(linear) stability is that JgJ2 = g g < 1. Carrying out the indicated manipulations 
this leads to: 

H (0, #, y, k) = 102k+ (4#y)k(o3y _ y + 1)k+l + 0k+ (2#y) (1 ) kSk+1 - 0 

(21) + (fy - y + 1) (6 - 1) (20) k+1 (y)k(-1)kSk 

+ 0(l - 20) (Oy - y + 1) ? < 0 

where 

k = E (7)(-)q(1Y)I 
* 2 

y= sin ), 
2 2 f= a 

Our task is to find the maximum f, for given natural number k, for a given 2 < 0 < 1, 
for all values of y, 0 _ y < 1, such that the inequality (21) is still preserved. While 
we have not succeeded in solving (21) analytically (except for special values of 0 
and/or y which served as a check on the numerical results), we carried out a numeri- 
cal solution of (21), from which the following conclusions are drawn: 

(i) The solution of (21) may be expressed in the form: d < z2(6, k)/20 which 
means that the desired stability criterion is of the form 

(22) 
At < z(0, k) 
AX (max I a I) (20)1 /2 

where, it was found numerically, that .995 < z(O, k) < 1. 
(ii) For the special case k = 2m, 2 < 0 < 1, we find z(0, 2m) = 1. 
(iii) z (2,k) =1. 

(iv) z(0, co) = 1. 

In view of the above we decided to use a single stability criterion for all the 
various cases of different degree of implicity (0) and different number of iterations 
(k), namely 

(23) At_ 0.95 
Ax (max I a1)(20)1/2 

where the numerical coefficient provides us with a margin of safety. Note that 0 = 

leads us back to the CFL stability criterion, while for 0 = 1 we get the most 
stringent one which calls for time steps which are 30% smaller. 

Next we consider the behavior of Wjn+l ,k as k -a c. We should like to find out 
under what conditions will Wjn+lk approach the exact implicit solution. The 
analysis is carried out here also for A constant. Equation (15) may be written as 
follows: 

f n+1 s+1 = W - n _ A A [Wn+O, s Wl+O S] 

(24) 2 

+ kA2. [Wn+O s - 2Wjn+ 8 + Wnii, ] 

where 
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w i+ = =wjr+"s + (I - O)W . 

Now subtract from (24) the implicit equation which is of the same form except that 
instead of Wfn+e,8 we have OWjn+1 + (1 - 0)Wj3. With ejs = Wjn+l,8 -Wjn+ the 
resulting equation is: 

8+1 X e ) + 2 -2e_ + ee1) ei A - -A.0(e,+i - e>) A - ~ es--L- 2e8eJ+e 

If we use the same Fourier-type analysis as for the stability study i.e. substitute 
ejs = Es exp [iwxj], we obtain after some manipulations 

(25) ei = Leis= = ... -L+leo) = Ls+l(Wn - Wn+l) 

where the matrix operator L is 

L = -iX.0 sin 20,A - 2X20 sin2 4 A2. 

The characteristic value, 1, of L is given by the spectral mapping theorem 

I -2X0a sin (i cos 4 + Xa sin 45) 

and thus 

(26) 1112 =1 1 40y02(1-y+13y)< (2,30)2 (forO y< 1;,3') 2 

from (25) we find that ejs+1 80, 0 only if max Ill < 1. Equation (26) shows that 
this condition is fulfilled only if /3 < 1/20, or At/ Ax < 1/(max I aj1) (20)1/2. Since our 
computational stability criterion, Eq. (23), meets this requirement the successive 
iterates approach the implicit solution. It can be shown that for 0 = 1 the above 
criterion is still valid. 

5. Numerical Results.** 
5.1. The Treatment of Equations of First-Order Accuracy. Before proceeding to 

present the results based on the scheme delineated above we make a short detour in 
order to describe the application of the iterative method to the first-order accuracy 
difference equations. This means we consider only the first two terms on the right- 
hand side of Eq. (4). The resulting algorithm for this case is then 

(27) l+ W _ _ - 2j_1 

where 

F n+69s = 0F n+1,8 + ( F1 - j 0)F 

When 0 this reduces exactly to the case treated by Gary [1], [2]. We have re- 
peated his calculations for the case of weak shock wave (pi/po = 1.4) and obtained 
the same result as reported by him. When, however, the same calculation (i. e. with 
0 = 2) is carried out even for a moderate shock strength (pi/po = 4) the post shock 
oscillations are severe. This is seen in Fig. 1. When the calculation was repeated for 
the same physical case (i.e. steady-plane shock wave, pi/po = 4, y = 3) but with 

** In all of our cases the shock front moves from right to left, while the discrete Lagrangian 
coordinate runs from 1 to 201, i.e. Ax = .005. The initial time is t = 1.00. 
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0 = 1 the oscillations were reduced by a large amount even after one iteration-see 
Fig. 2. 

,, , I I - , , t 

6.0. 

0.5 - f l 

5.0- = 

sok =w4 
4.5 N100 

4.0_ 

3.5_ 
P 

3.0 _ 

2.5_ 

2.0_ 

_ .5 

1.0 

0.5 _ _ 

65 81 97 113 129 145 161 177 193 
X 

FIGURE 1. The pressure p as function of the Lagrangian coordinate x, after N 100 time 
steps; computed by the method of [1J. Note the severe oscillations for this moderate strength 
shock wave. 
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2.5- 
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FIGURE 2. p vs. x as in Fig. 1 except that here 0 = 1. 
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FIGURE 3. p vs. x computed by the method of Godunov. 
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FIGURE 4. p vs. x computed by the Lax-Wendroff scheme. No artificial viscosity. 

We shall now present a concise account of an analysis that might explain the 
"success" of the iterative method at 0 = 1 and its failure at 0 = -. If one carries 
out the stability analysis as is done in Section 4, but for the system given by Eq. (27) 
rather than by Eq. (15), one finds two expressions for the magnitude of the char- 
acteristic value of the amplification matrix, depending on whether the number of 
iterations, k, is odd or even. 
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2=1 +/ib2 + 2(1 + )(-1)mb2m+2F1 + (1 + A)(-1)mb2m+21 

(28) 1 +b Ll+ b2 

(k = 2m + 1), 

219 = 1 + 2 
m+122m+2F/. + 2(1 + ,u)( 1)m+1b2m1 = + .~2 + 2(1 + m)(-1)-+b 2 

(29) 1 +b LI1+ b2 

(k = 2m), 

where, as before, , = (1 - 0)/0 and b = -X0a sin 24. If 0 = = 1 and the 
above expressions reduce to Gary's results [1] with the consequence that for k = 3, 
4, 7, 8, -.. the scheme is stable, provided At/ Ax < 2/(max Ia1), and unstable 
otherwise. However, we claim that since in order to perform three iterations the 
machine must go through the second iteration first, the scheme will be effectively 
unstable at all times. Figure 1 confirms this since the calculations were carried 
through four iterations, presumably a "stable" number. On the other hand for 
O = 1, , = 0, Eqs. (28) and (29) reduce respectively to 

II2 = [1 + (-1)mb 2m+2]2 (k = 2m + 1) 

and 

= + b _2 (k = 2m). 

The stability requirement is JgJ2 < 1. For even number of iterations, k = 2m, it 
follows immediately that this implies IbI < 1 and hence X < 1/max I a1. For k odd 
we get X < 6/max IaI where 1 < 5 < 4/3 for k = 4r + 3 and 3/4 < ( < 1 if 
k = 4r + 1. In any case it has just been demonstrated that for 0 = 1 the scheme is 
stable for any number of iterations in contradistinction to the 0 = case. This may 
explain the small amplitude of the oscillations in Fig. 2. To provide a yard-stick for 
the "quality" of the scheme in the stable case (0 = 1) we computed the same shock 
using a method due to Godunov [4] which is supposed to yield smooth profiles. 
As seen from Fig. 3, the pressure profile looks qualitatively the same as that in Fig. 2. 
The proof of the convergence of the iteration to the implicit solution in the case of 
general 0 follows exactly the same lines as above and yields the criterion 
X < 1/(max al)O. 

5.2. Iterating the Lax-Wendroff Difference Scheme. We have solved numerically 
the L-W difference equations, with and without artificial viscosity-Eqs. (6) and (5) 
respectively. This was done for a polytropic gas without iterations (k = 1) and with 
iterations (k > 2), for many different values of the parameters pi/po, 7, and 0. 

Consider the typical example of a plane steady shock wave with pressure ratio 
of 4. Figures 4 to 7 show, respectively, the cases when the calculations were made 
(i) with no iterations (k = 1) and no artificial viscosity (a = 0), (ii) no iterations 
but with artificial viscosity (a = 2), (iii) one iteration (k = 2) and no artificial 
viscosity, and finally (iv) two iterations (k = 3) and no artificial viscosity. The 
plots show the pressure profiles rather than the velocity because we found the 
pressure to be more sensitive to perturbations. It is seen that the iterations are much 
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more effective than the artificial viscosity in removing the oscillations. Notice that 
one iteration alone (k = 2) does most of the job and for k = 3 the profile is very 
similar although the shock front is somewhat steeper. We also ran a twenty-itera- 
tions case and found that to the stale of the plot the results were indistinguishable 
from that of k 3. Another observation is that for different times the profiles were 
the same. 

I II , Ii , I ,i ,i ., , ,_ 
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4.0_ 
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3.0 _Y= 3 

2.5 _ N 100 
P __ 

2.0_ 

1.5 
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65 81 97 113 129 145 ICl 177 193 

x 

FIGURE 5. p vs. x computed as in Fig. 4 but with artificial viscosity. 
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FIGURE 6. p vs. x computed iteratively with one iteration (k =2). 
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FIGURE 7. p vs. x with two iterations (k = 3). 
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FIGURE 8. p vs. x computed iteratively for a strong shock wave (p/po = 10). 

It occurred to us that the combination of a high pressure ratio and low 'y will 
present the most severe test to the iterative method. This is so because at high pres- 
sure ratios the specific volume ratio vo/v1 approaches its asymptotic value of 
(y + l)/(y - 1). That the high pressure by itself does not cause any problems one 
can see from Figs. 8, 8a and 8b, where pi/po = 10, 7 = 3, 2 and 1.4 respectively and 
after one iteration (k = 2) the profile is monotonic. Similarly we see from Fig. 8c 
that low y (-y = 1.2; pl/po = 4) by itself also does not present any difficulties. We 
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therefore tested the case of plane steady shock with pi/po = 10 and y = 1.2. Figures 
9 and 10 present respectively the results for the no iterations case without and with 
artificial viscosity. It is seen that the overshoot for k = 1, a = 0 is much worse 
than for pi/po = 4 and that the artificial viscosity brings it down considerably. 
We found out that with iterations the results improved but that the scheme with 
a > 0 worked better and we show the results in Fig. 11 for two iterations with 
a = 3/2. While the profile is not monotonic, the overshoot is very small. For com- 
parison we ran the same test case with the Godunov method-see Fig. 12. Clearly 
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FIGURE 8 a) p vs. x as in Fig. 8 but for y =2. 
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FIGURE 8 b) p vs. x as in Fig. 8 but for y = 1.4. 
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FIGURE 8 c) p vs. x as in Fig. 6 but for 7X = 1.2 and 6 = 1. 
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FIGURE 9. p vs. x for strong shock and small y - computed by the Lax-Wendroff scheme 

without artificial viscosity. 

the iterative scheme gives a "cleaner" profile. All of the high pressure runs shown 
here were computed with C = 1 which gives smoother results than 0 = 2. In this 
sense the scheme with 0 = 1 is more dissipative. 
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In the course of these test cases and many other ones of low y and high pi/po we 
have encountered an interesting numerical behaviour which we would like to report. 
With no artificial viscosity the profile computed with one iteration (k = 2) has no 
overshoot. One more iteration "spoils" the profile. As more iterations are taken the 
profile becomes smooth again. However, for the case y = 1.2, pl/po = 10 it takes 
several tens of iterations to obtain results which are as good as those obtained with 
one iteration only. This phenomenon is noticeable, we stress again, only for the 
combination of low a, and strong shock (e < 1.4, pi/po ? 10). Thus it seems that 
for all values of y and pi/po good results are obtained with one iteration only 
(k = 2). 
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FIGURE 10. p vs. x as in Fig. 9 but with artificial viscosity. 
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FIGURE 10 a) p vs. x as in Fig. 9 but with iterations. 
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FIGURE 11. p vs. x as in Fig. 10, computed iteratively. 
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FIGURE 12. p vs. x for strong shock and small y - computed by the method of Godunov. 

Finally we decided to test the method in a nonsteady nonhomogenous case. The 
problem chosen is that of detonation wave (e = 3) reflecting off a rigid wall as a 
hydrodynamic shock which moves into a moving nonhomogeneous region (the 
Taylor wave region-see references [6], [7] and [8]). Again the resulting profiles are 
monotonic-as shown in Fig. 13 in which the advancing wave is shown at several 
instances. 

To summarize-the iterative scheme operating on the Lax-Wendroff difference 
equations gives very good results (monotonic profiles) for all the cases tested 
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FIGURE 13. Shock wave reflecting off a wall as a result of a detonation wave impact. The 
pressure p vs. x at various times. 

stationary and nonstationary, except when we had a confluence of a high pressure 
ratio (pi/po = 10) and a low polytropic exponent (-y = 1.2). Even then the results 
are a big improvement over the computation without iterations. 
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